Multipacting in CH1 (?)

MP? Suspicious places

Field distribution between spokes.

Field distribution between spokes provides field gradient along Y, which is necessary for one-point MP, and focusing in X-Y plane.

Particle tracking in RT CH1 at P ≈ 1 kW

Multipacting in PETRA II cavity. Steady state.

Figure 1. Schematic view of the 52 MHz cavity. This Fig. is taken from[1].

Electrons can leave dielectric at any phase. Broadband phase of collision -> integral secondary re-emission coefficient: $<\sigma>=f(E_{RF},E_{ES},\sigma)$

Figure 3. Integral re-emission coefficient <0> as a function of

Development of MP at dielectric for E_{RF}||

Assume that E provides mean energy for background electrons optimal for re-emission.

Current from dielectric target (2) vs floating potential. No MP, only background *ee*

Floating potential as a function of time for different power.

 I_b – current of incident background *ee* $I_e = \sigma^* I_b$ – emitted current

[6] L.V.Grishin et al. Investigation of Secondary- Emission RF-Discharge at Big Angles of Electron Flight. Proceedings of Lebedev Physical Institute, Vol. 92, pp.82-131, 1977 (in Russian).

CONCLUSION

- 1. The ceramic window is charged by background electrons.
- 2. We don't reach full MP, presumably because of low re-emission coefficient of the ceramic (Sigma>3.5-3.7 at least is needed).
- 3. TiN coating of vacuum side of ceramic would be a good pre-emptive measure.
- 4. The processes in the cavities require further study. But probably TiN coating of inter-spoke area should be considered.
- 5. A look at the similar area in TSR would not be out of place.
- 6. It's time to upgrade PC devoted for MWS.